

Max Marks: 80

B.Tech I Year (R07) Supplementary Examinations, December 2010 APPLIED PHYSICS

(Electrical & Electronics Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Biomedical Engineering, Information Technology, Electronics & Control Engineering, Electronics & Computer Engineering, Computer Science & Systems Engineering)

Time: 3 hours

Answer any FIVE questions All questions carry equal marks *****

- 1. (a) Define
 - i. lattice constant
 - ii. packing fraction and
 - iii. coordination number.
 - (b) Compare the unit cell properties of SC, BCC and FCC structures.
- 2. (a) What are Miller indices? Draw (111) and (110) planes in a cubic lattice.
 - (b) Explain Bragg's law of X-ray diffraction.
 - (c) The Bragg's angle for reflection from the (111) plane in a FCC crystal is 19.2° for an X-ray wavelength of 1.54 A.U. Compute the cube edge of the unit cell.
- 3. (a) Show that the wavelength of an electron accelerated by a potential difference 'V' volts, is $\lambda = 1.227 \times 10^{-10} / \sqrt{V}$ m for non-relativistic case.
 - (b) Describe an experiment to establish the wave nature of electrons.
 - (c) Explain the difference between a matter wave and an electromagnetic wave.
- 4. (a) What are the salient features of the "free electron gas" model? Obtain Ohm's law based on it.
 - (b) Explain the concept of "effective mass".
- 5. (a) What is local field? Explain. Show that the local electrical field E_{loc} is given by $E_{loc} = E\left(\frac{\varepsilon_r+2}{3}\right)$ where E is the applied electric field.
 - (b) An air-filled capacitor has a capacitance of 1.3 pf. The separation of the plates is halved and a dielectric is inserted between them. The new capacitance is 3.9 pf. Find the dielectric constant of the dielectric.
- 6. (a) Explain the effect of temperature and dopent on the Fermi level in a semiconductor.
 - (b) i. Find the conductivity of intrinsic silicon at 300 K. It is given that n_i at 300 K in silicon is $1.5 \times 10^{16}/m^3$ and the mobilities of electrons and holes in silicon are 0.13 m^2/V -s and 0.05 m^2/V -s respectively.
 - ii. If donor type impurity is added to the extent of one impurity atom in 10^8 silicon atoms, find the conductivity.
 - iii. If acceptor type impurity is added to the extent of one impurity atom in 10^8 silicon atoms, find the conductivity.
- 7. (a) Explain the following:
 - i. Life time of an energy level.
 - ii. Optical pumping processes.
 - iii. Metastable states.
 - (b) Distinguish between spontaneous and stimulated emission processes of light.
 - (c) Discuss briefly the different methods of producing laser light.
- 8. (a) Distinguish between light propagation in
 - i. step index and
 - ii. graded index optical fibres.
 - (b) Discuss the various advantages of communication with optical fibres over the conventional coaxial cables.
 - (c) Calculate the refractive indices of core and cladding of an optical fibre with a numerical aperture of 0.33 and their fractional difference of refractive indices being 0.02.